Australia, Sydney ACN 144 498 251 62 Wyndham Street, Alexandria NSW 2015 +61 293 180 700

e-mail: info@stu21.com.au http://www.stu21.com.au

skype: STU

I assent Managing Director "String Technologies Unitsky Pty Ltd"

String Technologies
Unitsky Pty Ltd
ACN
144 498 251

A.E. Yunitskiy

23 May 2011

High Speed SRS Intercity String Transport System

Technical Analysis
Optimal model range
Criteria and parameters of the system

CONFIDENTIAL reproduction, transfer to other private or legal entities or use in print are prohibited without prior consent of STU Pty Ltd

The List of Major Implementors

STU General Designer, Managing Director of		
STU Pty Ltd	SOM	A.E.Yunitskiy

Executive manager,

The Head of STU Pty Ltd Representation

Office in the Republic of Belarus

I.P.Dubatouka

Deputy Head of STU Pty Ltd Representation

Office in the Republic of Belarus

D.A. Yunitskiy

Chief Designer

The Head of Design and Layout Department

A.I. Laptsevich

V.V. Danshchykou

The Head of Body Design Department

S.S. Zavalikhin

The Head of Running Gear Design

Department

U.U. Dabravolski

The Head of Power Equipment Design

Department

A.P. Lashkevich

Principal Design Engineer

V.V. Kashynski

Principal Design Engineer

S.A. Arefyeu

Designer-architect of the I category

A.I. Dziunel

Contents

I	Introduction	
	1.1 Name, Field of Application and Development Purpose	5
	1.2 Development Basis	5
	1.3 Customer	5
	1.4 Introductory Clause	5
2	The Relevancy of New High Speed SRS Ground-Level Transport System	7
3	The Concept of High Speed SRS Transport System	14
4	Technical and economic research and analysis of SRS transport system	
	depending on passenger capacity, gauge size, type of engine, power	
	consumption, aerodynamic parameters, wheel/rail interface geometry,	
	operating speed, rolling stock efficiency, operational expenses, track	
	structure (supports) construction, the number of stuff, the cost of automatic	
	control system and infrastructure.	20
	4.1 General Description of SRS Transport System	20
	4.1.1 Passengers haulage and freight haulage. Rolling stock	20
	4.1.2 Track structure	23
	4.1.3 Infrastructure	26
	4.2 The Calculation of Operational Expenses. Transportation Costs	
	Research Methodology	29
	4.2.1 Amortization charges and expenses for repair and	
	maintenance	29
	4.2.2 Energy costs	32
	4.2.3 Staff costs	33
	4.2.4 General economic costs	35
	4.3 The source data for technical and economic analysis of SRS transport	
	system	36
	4.4 Haulage cost and passenger traffic flow dependency research	44
	4.5 Calculation of fare for a given payback period	51
	4.6 Research of cost per haulage dependency on changing the parameters	
	of transport system	53

	4.6.1 The influence of unibus velocity	54
	4.6.2 The influence of aerodynamic resistance coefficient C_X	54
	4.6.3 The influence of unibus rolling resistance coefficient	55
	4.6.4 The influence of string-rail track structure cost	56
	4.6.5 The influence of rolling stock cost	56
	4.6.6 The influence of staff costs	57
	4.6.7 The influence of automation equipment cost	58
	4.7 The analysis of cost per haulage dependency on changing the	
	parameters of transport system research results	58
5	General arrangement of high speed unibus major technical solutions	61
5	Ecological sustainability. Visual pollution	65
7	All-weather operation and other advantages of high speed SRS intercity	
	transport system	68
3	Conclusions and recommendations	70
	8.1 Conclusions	70
	8.2 Recommendations	74
)	List of references	75

1 Introduction

1.1 Name, Field of Application and Development Purpose

Name: High Speed SRS Intercity String Transport System. Technical analysis. Development of the optimal model range. Identification of the optimal criteria and parameters of the system.

Field of application: High speed passengers transportation.

Development purpose: Preliminary research of technical and economic parameters; development of the main technical solutions for the concept of a new high speed ground-level SRS transport system, based on STU technology; identification of the optimal criteria and parameters of the system.

1.2 Development Basis

The basis for the Technical Analysis of High Speed SRS Intercity String Transport System is Statement of Work No.001, dated and effective 23rd of February 2011 submitted in connection with the Master Services Agreement by and between String Technologies Unitsky Pty Ltd (ACN 144 498 251) and Silk Rail Systems Limited (ACN 144 498 411), dated 17th of December 2010.

1.3 Customer

Silk Rail Systems Limited (ACN 144 498 411), Australia.

1.4 Introductory Clause

During the past two centuries human civilization has been developing in the way of urbanization, i.e. the creation of cities and urban agglomerations. This process was rapidly developed in the XX Century and is in progress in the XXI Century. By now

more than 50% of world's population lives in the cities. By 2025 urban population will account for 2/3 of the total world population. According to experts estimates about 80% of the population of developed countries will live in the cities by 2030. It was established that half of the world's population lives in the cities with the population over 500,000 people. The number of large cities (million inhabitants) and very large cities (ten million inhabitants) is growing steadily. The cities are not just the centers of population living, but also business and employment centers, cultural and sports centers. At the same time globalization, economic growth and rapid spreading of information resulted in spatial mobility of population. Therefore, there is great necessity in providing high-speed transportation of large masses of people at an average (more than 100 km) and long (more than 1000 km) distances. Existing transport systems (air transport, automobiles, rail and water transport systems) do not provide the required mobility of the population. It is the main reason for dynamic growth of high speed ground-level public transportation, such as high speed railways and magley trains.